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LEITER TO THE EDITOR 

On tunnelling in the cubic potential 
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Abstract. The tunnelling rate in real time in the semiclassical limit has been calculated for 
arbitrary energy levels in the cubic potential. For the ground state it agrees well with the 
result found by the instanton method. 

In many areas of solid state physics there is a need to calculate the probability of 
quantum mechanical tunnelling of an object trapped in a metastable potential well 
[l-31. The cubic potential is of particular importance. I t  is given by the following 
formula 

V ( x )  = imw2x2 -imAx3 (1) 
where x is the coordinate of the particle of mass m under consideration and w is the 
frequency of small oscillations in the metastable well. There had been a great deal of 
effort put into calculating the lifetime in the above potential well. Most calculations 
deal with the ground state. The theory developed by Lapedes and Mottola [4] can 
allow for calculations of the lifetime for all states, not only the ground state. Their 
theory has been developed in imaginary time. In the present letter we present calcula- 
tions for the lifetime of an arbitrary state in the potential well given by (l) ,  working 
in real time. This was possible due to some properties of elliptic functions. 

For our purpose let us use the Feynman propagator which describes the evolution 
of a particle from the initial state xi to the final state xf defined as 

where S[x] =j,' dr L(x,  x) is the action of our system and 

L = L(X, x) = fmx2  - ~ ( x ) .  (3) 

In the semiclassical limit the above functional is dominated by the stationary points 
x,( t )  obeying the equations 

d 
dx 

mx,+- V ( x , )  = 0 

along with boundary conditions x,(O) = x,( T )  = x, .  
After integrating (4) for the potential ( l ) ,  one finds 

x,( t )  = ( c  - b ) c n 2  

(4) 

( 5 )  
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with the property x,( t + T )  = x,( t ) .  Here g = 2/&, and 

T = d$ (2pK +2ivK') 

where 1.1, v E N and K and K '  are complete elliptic integrals of the first kind. The 
values of a, b and c are given by 

a = - (1 + 2 cos 44) w 2  

w 2  

w z  

A 

( 7 )  b =- (1 -cos !4+& sin iqb) 

c =- (1 -cos $4 - A  sin 44) 

A 

A 

where 4 = cos-'( 1 - 2 ~ /  Vo), Vo is the potential barrier height and E is the energy of 
the tunnelling particle. With the above solution we are able to calculate the action 
S[x,]. Because of the imaginary period of the elliptic functions, it will consist of two 
parts: real and imaginary. We have 

S [  x,] = pS1 + i vS2 (8)  

where 

(9) s I -  - 4s - ! . !@(?$) ' .$$[(a- ! .&~)K+(c-a)E 3 A Vo 

1 S - --(T) 4mh 3 w 2  ' E [ ( a - ' " 4 ) K ' + ( c - a ) ( K ' - E ' )  . (10) 
45 3 A Vo 2 -  

Here E and E' are the complete elliptic integrals of the second kind. The rest of our 
calculation is standard and we refer to Rajaraman [5]. We only quote the result here: 

The summation in (11) over paths was done along the general lines described by 
Lapedes and Mottola [4], with the result 

-1 T, exp[(i/h) Wl]+iT2exp( W2/h) 
G(E)=- 

2 ~ J m  l+exp[(i/h) W,]+exp( w2/fi) 
where 

and 

W ,  = 2 f i  IC* d 2 ~  - 2 V ( x )  dx 

K' 
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The decay rate to first order in the exponentially small exp( W J h )  is given by 

where 

211 
U,(&:)=-  

TI ( &: ) * 

To compare our results with existing results we have calculated r, for the ground 
state. We have found 

36w 
To=- ll exp(47/1*O)J$ exp-(36Vo/5hw). 

This is in agreement with Caldeira instanton result [6] except for the prefactor which 
in our calculations is 3.34 times larger. 
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